Module description

Module
Information Management

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Credit points</th>
<th>Hours required</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Recurrence frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0015</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Summer semester</td>
</tr>
</tbody>
</table>

Language
German

Person responsible for the module
Vice Chairperson, Academic Affairs

<table>
<thead>
<tr>
<th>1</th>
<th>Courses in the module</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Course No.</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>20-00-0015-iv</td>
</tr>
</tbody>
</table>

Content
- Basic concepts of information management:
 - Concepts of information systems
 - Information storage/retrieval, searching, browsing, declarative access and access via explicit navigation
 - Quality characteristics:
 - Consistency, scalability, availability, reliability
- Data Modeling:
 - Conceptual data models (ER / UML structure diagrams)
 - Conceptual design
 - Operational Models (relational model)
 - Mapping the conceptual to the operational model
- Relational model:
 - Operators
 - Relational algebra
 - Relational calculi
 - Impact on query languages based on relational algebra and relational calculus
 - Design theory and normalization
- Query languages:
 - SQL (in detail)
 - QBE, Xpath (overview)
- Storage media:
 - RAID, SSD
 - Buffering and caching
Implementation of relational operators:
- Implementation algorithms
- Cost functions

Query optimization:
- Heuristic query optimization
- Cost-based query optimization

Transaction processing:
- Flat transactions

Concurrency control and correctness criteria:
- Serializability, recoverability, ACA, strictness
- Insulation grade
- Lock-based scheduling, 2PL
- Multiversions to control concurrency
- Optimistic scheduling
- Logging
- Intermediate statuses (checkpointing)

Current trends in Information Management:
- Main memory databases
- Column-based data management
- NoSQL

Qualification objectives / learning outcomes

After successfully taking part, the students will be informed about the basics of Information Management. They will understand the techniques of creating information management systems and be able to use the respective models, algorithms, and languages to independently use or create (parts of) information management systems. They will be able to rate the quality of such systems based on different quality measures.

Prerequisites for participation

Recommended: Successful participation in the lectures "Funktionale und Objektorientierte Programmierkonzepte" and "Algorithmen und Datenstrukturen" or equivalent knowledge from other courses of study.

Type of examination

Subject examination in written form, 90 min.

Prerequisites for Credit Points

Passing the module exam (100%)

Grading

Standard

In this lecture, it is possible to take into account accompanying achievements, which – according to § 25 (2) of the 4th amendment of the APB and the rules adopted by the Department 20 on October 2, 2012 – can lead to an improvement in grades of up to 1.0.
8 **Applicability of the module**
B. Sc. Computer Science
B. Sc. Business Informatics
B. Sc. Psychology in IT
Joint B.A. Computer Science
B. Sc. Sports Science and Computer Science
M. Sc. Sports Science and Computer science
Can also be applicable for other programs in the context of interdisciplinary offers.

9 **Literature**
Will be announced. Examples are:
Haerder, Rahm, "Datenbanksysteme - Konzepte und Techniken der Implementierung", Springer 1999

10 **Comment**
Module description

Module
Data Mining and Machine Learning

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Credit Points</th>
<th>Hours required</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Recurrence frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0052</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Semester</td>
<td>Usually every winter semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Person responsible for the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>German and English</td>
<td>Coordinators Web, Knowledge and Information Processing</td>
</tr>
</tbody>
</table>

Courses in the module

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course title</th>
<th>Workload (CP)</th>
<th>Type of lecture</th>
<th>Contact hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0052-iv</td>
<td>Data Mining and Machine Learning</td>
<td>6</td>
<td>Integrated course</td>
<td>4</td>
</tr>
</tbody>
</table>

Content

Due to the rapid development of information technology, there are increasing data volumes available – and they often contain implicit knowledge that, if it actually became known, could be of great economic or scientific significance. Data Mining is a research area that seeks to find potentially useful knowledge in large sets of data, and Machine Learning is one of the key technologies in this area.

The lecture provides an introduction to the field of Machine Learning, with a special focus on the aspect of Data Mining. Methods from different paradigms of Machine Learning are presented with references to exemplary applications. Practical exercises with learning algorithms serve to operationalize the knowledge.

- Introduction (basic terms, learning problems, concepts, examples, representation)
- Rule learning
 - Learning of individual rules (generalization and specialization, structured Hypothesis rooms, Version Spaces)
 - Learning of rules-sets (Covering Strategy, evaluation of rules, Pruning, multi-class problems)
- Evaluation and cost-sensitive learning (Accuracy, X-Val, ROC curves, cost-sensitive learning)
- Instance-based learning (kNN, IBL, NEAR, RISE)
- Decision tree learning (ID3, C4.5, etc.)
- Ensemble methods (bias/variance, bagging, randomization, boosting, stacking, ECOCs)
- Pre-processing (Feature Subset Selection, discretization, sampling, data cleaning)
- Clustering and Learning based on association rules (a priori)

Qualification objectives / learning outcomes

After successfully taking part, the students will be able to

- understand and explain basic techniques of Data Mining and Machine Learning
- independently use practical Data Mining systems and understand their strengths and weaknesses
- critically assess new developments in this field
<table>
<thead>
<tr>
<th>4</th>
<th>Prerequisites for participation</th>
</tr>
</thead>
</table>
| 5 | **Type of examination**
Subject examination in written and oral form, 60-120 min. / 30 min. |
| 6 | **Prerequisites for Credit Points**
Passing the module exam (100%) |
| 7 | **Grading**
Standard
In this lecture, it is possible to take into account accompanying achievements, which – according to § 25 (2) of the 4th amendment of the APB and the rules adopted by the Department 20 on October 2, 2012 – can lead to an improvement in grades of up to 1.0. |
| 8 | **Applicability of the module**
B. Sc. Computer Science
M. Sc. Computer Science
M. Sc. IT Security
M. Sc. Autonomous Systems
M. Sc. Visual Computing
M. Sc. Internet and Web-based Systems
M. Sc. Business Informatics
B. Sc. Psychology in IT
Joint B.A. Computer Science
B. Sc. Sports Science and Computer Science
M. Sc. Sports Science and Computer Science
B. Sc. Information Systems Engineering
Can also be applicable for other programs in the context of interdisciplinary offers. |
| 9 | **Literature**
| 10 | **Comment** |
Module description

Module
Data Mining and Machine Learning

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Credit Points</th>
<th>Hours required</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Recurrence frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0052</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Semester</td>
<td>Usually every winter semester</td>
</tr>
</tbody>
</table>

Language
German and English

Person responsible for the module
Coordinators Web, Knowledge and Information Processing

Courses of the Module

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course title</th>
<th>Workload (CP)</th>
<th>Type of lecture</th>
<th>Contact hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0052-iv</td>
<td>Data Mining and Machine Learning</td>
<td>6</td>
<td>Integrated course</td>
<td>4</td>
</tr>
</tbody>
</table>

Content

Due to the rapid development of information technology, there are increasing data volumes available – and they often contain implicit knowledge that, if it actually became known, could be of great economic or scientific significance. Data Mining is a research area that seeks to find potentially useful knowledge in large sets of data, and Machine Learning is one of the key technologies in this area.

The lecture provides an introduction to the field of Machine Learning, with a special focus on the aspect of Data Mining. Methods from different paradigms of Machine Learning are presented with references to exemplary applications. Practical exercises with learning algorithms serve to operationalize the knowledge.

- Introduction (basic terms, learning problems, concepts, examples, representation)
- Rule learning
 - Learning of individual rules (generalization and specialization, structured Hypothesis rooms, Version Spaces)
 - Learning of rules-sets (Covering Strategy, evaluation of rules, Pruning, multi-class problems)
- Evaluation and cost-sensitive learning (Accuracy, X-Val, ROC curves, cost-sensitive learning)
- Instance-based learning (kNN, IBL, NEAR, RISE)
- Decision tree learning (ID3, C4.5, etc.)
- Ensemble methods (bias/variance, bagging, randomization, boosting, stacking, ECOCs)
- Pre-processing (Feature Subset Selection, discretization, sampling, data cleaning)
- Clustering and Learning based on association rules (a priori)
Qualification objectives / learning outcomes

After successfully taking part, the students will be able to:
- understand and explain basic techniques of Data Mining and Machine Learning
- independently use practical Data Mining systems and understand their strengths and weaknesses
- critically assess new developments in this field

Prerequisites for participation

Type of examination
Subject examination in written and oral form, 60-120 min. / 30 min.

Prerequisites for Credit Points
Passing the module exam (100%)

Grading

In this lecture, it is possible to take into account accompanying achievements, which — according to § 25 (2) of the 4th amendment of the APB and the rules adopted by the Department 20 on October 2, 2012 – can lead to an improvement in grades of up to 1.0.

Applicability of the module

- B. Sc. Computer Science
- M. Sc. Computer Science
- M. Sc. IT Security
- M. Sc. Autonomous Systems
- M. Sc. Visual Computing
- M. Sc. Internet and Web-based Systems
- M. Sc. Business Informatics
- B. Sc. Psychology in IT
- Joint B.A. Computer Science
- B. Sc. Sports Science and Computer Science
- M. Sc. Sports Science and Computer Science
- B. Sc. Information Systems Engineering

Can also be applicable for other programs in the context of interdisciplinary offers.

Literature

Module description

Module
General Computer Science II

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Credit points</th>
<th>Hours required</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Recurrence frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0290</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Semester</td>
<td>every other semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Person responsible for the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Vice Chairperson, Academic Affairs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses of the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course No.</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>20-00-0290-iv</td>
</tr>
</tbody>
</table>

Content

In this course, students will learn the basic algorithms and data structures of Computer Science, based on advanced concepts of the Java programming language.

- Repetition of basic Java-knowledge:
 * Variables, types, classes, program flow
 * Inheritance, abstract classes, interfaces
 * Arrays and collections

- Advanced knowledge:
 * Graphical User Interfaces
 * Input / Output
 * Error handling and exceptions

- Algorithms and data structures:
 * Recursion
 * Sorting algorithms
 * Batches, lists, queues
 * Searches
 * Trees and graphs

Qualification objectives / learning outcomes

After attending the event, students will be able to
- develop extensive programs in Java
- to independently use the basic algorithms and data structures of Computer Science
- to estimate the advantages and disadvantages of elementary algorithms with regard to complexity and execution time

Prerequisites for participation

Recommended:
- General Informatics I or
- basic programming skills
- basic knowledge in Computer Science
- experience in working with computers
| 5 | **Type of examination**
Module-accompanying examination:
* [20-00-0290-iv] (Subject examination in written and oral form, Standard) |
| 6 | **Prerequisites for Credit Points**
Passing the module exam (100%) |
| 7 | **Grading**
Module-accompanying examination
* [20-00-0290-iv] (Subject examination in written and oral form, weighting: 100%) |
| 8 | **Applicability of the module**
B. Sc. Computer Science
M. Sc. Computer Science
Can also be applicable for other courses of study |
| 9 | **Literature**
Algorithmen in Java
Robert Sedgewick
Pearson Studium
3. überarbeitete Auflage, 2003
| 10 | **Comment** |
Module description

Module
General Computer Science I

<table>
<thead>
<tr>
<th>Module No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0304</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points</th>
<th>Hours required</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Recurrence frequency: every other semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 CP</td>
<td>180 h</td>
<td>150 h</td>
<td>1 Semester</td>
<td></td>
</tr>
</tbody>
</table>

Language
German

Person responsible for the module
Vice Chairperson, Academic Affairs

1 Courses of the module

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course title</th>
<th>Workload (CP)</th>
<th>Type of lecture</th>
<th>Contact hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0304-iv</td>
<td>General Computer Science I</td>
<td>0</td>
<td>Integrated course</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Content

- Brief introduction to Computer Science
- Introduction to working with computers
- Introduction to programming (KarelJ, Java, or similar)
- Binary numeric and information representation
- Elementary logical and arithmetic operations
- Von Neumann computer architecture
- Elementary concepts of operating systems
- Basics of computer networks

The lecture will be accompanied by programming exercises.

3 Qualification objectives / learning outcomes

- Basic knowledge concerning the most important concepts of Computer Science
- Practical use of computers
- Basic programming skills

4 Prerequisites for participation

5 Type of exam

Module-accompanying examination

* [20-00-0304-iv] (Subject examination in written and oral form, Standard)

6 Prerequisites for Credit Points

Passing the module exam (100%)

7 Grading

Module-accompanying examination

* [20-00-0304-iv] (Subject examination in written and oral form, weighting: 100%)

Module Handbook Data and Discourse Studies – Computer Science 12
| 8 | **Applicability of the module**
B. Sc. Computer Science
M. Sc. Computer Science
Can also be applicable for other courses of study |
|---|---|
| 9 | **Literature**
| 10 | **Comment** |
Module description

Module

Foundations of Language Technology

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Credit Points</th>
<th>Hours required</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Recurrence frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0546</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Semester</td>
<td>usually every winter semester</td>
</tr>
</tbody>
</table>

Language

German

Person responsible for the module

Coordinators Web, Knowledge and Information Processing

1 Courses of the Module

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course title</th>
<th>Workload (CP)</th>
<th>Type of lecture</th>
<th>Contact hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0546-iv</td>
<td>Foundations of Language Technology</td>
<td>6</td>
<td>Integrated course</td>
<td>4</td>
</tr>
</tbody>
</table>

2 Content

The lecture offers an introduction to the key points of view, problems, methods, and techniques of automatic language technology – based on the example of the programming language Python.

Key topics:

- Language technology / Natural language processing (NLP)
- Tokenization
- Segmentation
- Speech recognition
- Corpora
- Statistical analysis
- Machine learning
- Categorization and classification
- Information extraction
- Introduction to Python
- Data structures
- Structured programming
- Working with files
- Use of libraries
- Program library NLTK

The lecture is based on the class library NLTK for Python – which provides a powerful toolbox to address the theoretical methods in an exploratory and problem-oriented manner, without requiring extensive programming knowledge.
3 **Qualification objectives / learning outcomes**

After attending the lecture, the students will be able to
● define the basic terminology of automatic language technology,
● name and explain essential questions in this area
● explain and implement simple Python programs
● transfer the discussed methods and techniques to concrete application scenarios of text comprehension
● critically assess their knowledge and their limits.

4 **Prerequisites for participation**

Recommended:

5 **Type of exam**

Module-accompanying examination

(Subject examination in written and oral form, Standard)

6 **Prerequisites for Credit Points**

Passing the module exam (100%)

7 **Grading**

Standard

8 **Applicability of the module**

B. Sc. Computer Science
M. Sc. Computer Science
M. Sc. IT Security
M. Sc. Internet and Web-based Systems
M. Sc. Business Informatics
B. Sc. Psychology in IT
Joint B.A. Computer Science
B. Sc. Sports Science and Computer Science
M. Sc. Sports Science and Computer Science

Can also be applicable for other programs in the context of interdisciplinary offers.

9 **Literature**

10 **Comment**